NSUN6 proteomic expression profile based on | ||||||||||||||||||||||||||||||||||||||||||||||||
Z-values represent standard deviations from the median across samples for the given cancer type. Log2 Spectral count ratio values from CPTAC were first normalized within each sample profile, then normalized across samples.
| ||||||||||||||||||||||||||||||||||||||||||||||||
Z-values represent standard deviations from the median across samples for the given cancer type. Log2 Spectral count ratio values from CPTAC were first normalized within each sample profile, then normalized across samples. Pan cancer subtype2: We identified 11 pan-cancer, proteome based subtypes (s1 to s11), using mass-spectrometry-based proteomic data from a compendium dataset of 2002 primary tumors compiled from 17 studies and 14 cancer types. Unsupervised clustering analysis was performed using the top 2000 most variable proteins from this compendium dataset, using log-transformed expression values centered to standard deviations from the median within each cancer type. The s11 subtype is specific to glioblastomas and pediatric brain tumors
| ||||||||||||||||||||||||||||||||||||||||||||||||
Z-values represent standard deviations from the median across samples for the given cancer type. Log2 Spectral count ratio values from CPTAC were first normalized within each sample profile, then normalized across samples. Pan cancer subtype2: We identified 11 pan-cancer, proteome based subtypes (s1 to s11), using mass-spectrometry-based proteomic data from a compendium dataset of 2002 primary tumors compiled from 17 studies and 14 cancer types. Unsupervised clustering analysis was performed using the top 2000 most variable proteins from this compendium dataset, using log-transformed expression values centered to standard deviations from the median within each cancer type. The s11 subtype is specific to glioblastomas and pediatric brain tumors
|